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By means of direct numerical solution of the kinetic equation for surface gravity waves, 
it is shown that under certain conditions the constant flux spectra of nonlinear waves, 
first predicted by Zakharov & Filonenko (1966) for an infinite frequency domain, can 
be formed in a finite frequency interval. For the case of angular isotropic spectra the 
conditions and timescales of this flux spectra formation are evaluated. 

1. Introduction 
As first shown by Hasselmann (1962) and confirmed later by Zakharov & Filonenko 

(1966), the temporal evolution of a wave-action wavenumber spectrum n(k) for 
nonlinear surface gravity waves is described by a kinetic equation of the kind 

an(k,> = M ,  3 ,  , 3,4 1, 6(Wl +W,  -W3 - U p )  6(k, -k k, -k, -k4) at 
x [n, nz(n3 + n4) - n3 n4(n1+ n,)] dk, dk, dk, = I. (1) 

Here k, is the wavenumber vector, wi = w(kJ = (gk)’I2 is the frequency of surface 
gravity waves with wavenumber k, n, = n(k,) is a wave-action spectrum, connected to 
a surface elevation energy spectrum S(k) by the relation 

n(k) = 2x,gS(k)/w; (2) 

= M(kl,  k,, k,, k4) are the matrix elements for nonlinear interactions of surface 
gravity waves, given, for example, in Crawford, Saffman & Yuen (1980); g is the 
acceleration due to gravity, and a( ...) are the delta functions. 

By means of a scaling analysis, Zakharov & Filonenko (1966, hereafter referred to 
as ZF) found analytically that a number of stationary solutions of (1) exist in an infinite 
frequency range 0 -= w < 03. For the case of an angular isotropic spectral density 
distribution in k-space, these solutions are as follows (Zakharov & Zaslavskii 1982): 

The spectra (3 a, b) correspond to a homogeneous distribution of an action spectral 
density and an energy spectral density over k-space, respectively. They make the 
interaction integral I on the right-hand side of (1) identically zero. This means that 
these spectra describe an equilibrium (‘no-flux’) distribution of spectral densities n(k) 
and S(k) over k-space in any frequency interval. By analogy with thermodynamics, 
such spectra may be called conventionally ‘thermalized’ ones. In the frequency 
representation the spectra (3 a, b) correspond to the relationships 

n(k) = const, n(k) - w-l, n(k) - w-23/3 , n(k) - w-*. (3 a-4 

n(w) - w3, n(w) - w2, (44  b) 

which follow from the relation n(k) = n(w, 8)g2/2w3 and the angular isotropy 
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condition. Owing to the obvious divergence of the integral Z for such n(w) functions, 
spectra (4) have no physical meaning (Zakharov & Zaslavskii 1982). 

From direct calculations (Polnikov 1989) it is known that spectra (3c,  d )  do not 
make the integral I equal to zero identically in a finite frequency interval. This means 
that in any frequency interval certain fluxes of wave action & and energy F, through 
a spectrum exist due to nonlinear interactions. These fluxes are connected with the rates 
of nonlinear transfers an/at and by the relationships 

an(k)/at + v, ~,(k) = 0, as(k)/at + v, ~ , ( k )  = 0. (5a, b) 

In the stationary case, the relevant fluxes should be constant over the wavenumber in 
k-space (or over the frequency in the w-space). For this reason, spectra (3c, d) are 
called flux (or fluxable) ones. According to Zakharov & Zaslavskii (1982), spectrum 
( 3 4  corresponds to a constant flux of a wave action 4 towards the low frequencies 
(flux 'down') and spectrum ( 3 4  to the constant flux of energy 4 towards high 
frequencies (flux 'up'). 

In a frequency representation, the flux spectra are described by the relationships 

where c,,c, are dimensionless constants of order unity. For a long time, spectra (6) 
have been considered as the theoretical basis for experimental fully developed wind 
waves spectra. However, a direct numerical confirmation of the possibility of their 
existence in a finite frequency interval as a stationary solution of equation (l), 
complemented by a source G(w) > 0 and a sink D(o)  < 0 at each end of the frequency 
interval, has not been achieved. Our work is devoted to the solution of this problem. 

With the aim of clarifying only the general features of the above problem, we shall 
consider in this paper the simplest case of the isotropic angular distribution of spectral 
density corresponding to the theory of ZF. The more general (anisotropic) case will be 
considered in a future work. 

S(w) = c1 Ftf/3gw-"13, S(O) = C, c13g4/5~-4, (6a, b) 

2. Calculation technique 
The following equation is solved numerically : 

as(w,e)/at = Z + G + D .  (7) 

Here I is the nonlinear scattering integral written in the frequency-angular energy 
spectrum S(w, 0) representation, G(w) > 0 is an energy source function, located at one 
end of the frequency interval used, and D(w) < 0 is an energy sink, located at the other 
end of the same interval. 

To calculate the integral I, we have used a discrete frequency-angle grid {w,,6,} 
given by ~ ~ = 0 . 5 ( 1 . 1 2 ) ~  ( i =  1,...,18) and 6,=-x+xj/24 ( j = O ,  ..., 23) (see the 
frequency set in figures 1-4). A larger integration grid for Z would take much more 
computation time. 

Our method of calculation of the kinetic integral is similar to that derived by Masuda 
(1980). It is sufficiently stable and accurate for our aims. A detailed description of it is 
given in Polnikov (1989). 

The solution of equation (7) is found by the Euler method with two-step smoothing 
of the spectrum according to 

Sn+l(w7 0) = +(Sa + + tZ(SJ + (G + 0)l Arn}), (8) 
where S, and S,,, are the spectrum values for two consecutive time steps and At,, is 
the relevant time increment. The choice of Atn is made automatically from the 



Flux spectra formation for surface gravity waves 29 1 

condition that the spectrum increment must not be more than 50 % of the current value 
S(w, 0) at any point of the grid {q, O,}. 

Another important feature of the calculation technique is the substitution of an exact 
spectrum value at the irregular w , 0  space points, provided by the &functions in the 
integrand of I, by appropriate interpolation of spectrum values from neighbouring 
regular points of the grid {wi, Sj}. The replacement is achieved by using 

(9) 

derived in Polnikov (1990) which is devoted to the numerical solution of the kinetic 
equation (1). I,n (9) the following notation is used : .!? is the previously calculated spectra 
value, t and 0 are the coordinates of the grid points which are nearest to the given w 
and 0, (5 and 8 $re the next-neighbour points, such that w is located between t and 3 
and 0 between 0 and 8. The magnitudes of Aw and A0 are defined by 

S(w, 0) = .!?(&, 6) (1 - Aw - A0) + S((5,d) Aw + .!?(&,8) A0, 

Aw = (w-(5)/1&-(51, A0 = (0-8)/l6-& (10a, b) 

The use of (9) and (10) allows numerical solution of the kinetic equation without loss 
of accuracy, and also a large-time evolution of the spectral shape to be investigated 
(Polnikov 1990). 

The main difficulty in the numerical solution of equation (7) (or (1)) arises from the 
strong dependence of relaxation time 7r, determined by the relationship 

7, = S(w)/(ww)/at), (1 1 )  

on frequency w.  According to Resio & Perrie (1991), the relevant dependence is T,  - 
o - ~ .  Thus using different values of At for different frequencies may be the optimal way 
to proceed. However, in our numerical solution we use a constant value of At for all 
frequencies, and so in the numerical solution of (7) it is necessary to smooth the high- 
frequency spectrum tail in order to prevent fast high-frequency oscillations of the 
spectral intensity (Polnikov 1990). For the same reason, the spectrum shape at some 
time moments appears not to be very smooth. 

As a result of numerous preliminary calculations, a method of choosing an adaptive 
At value was derived that permitted the above difficulty to be overcome. In addition, 
a special procedure for smoothing high-frequency oscillations of the spectral density 
was developed to allow the smooth rise of a numerical solution of (7) to a steady state. 

The smoothing is carried out in the following way. For a spectrum value near the 
upper end of the frequency interval (w > wb), we use the following set of two 
consecutive restrictions : 

S(w) = max [S(w), 0.2S(wb) (~/o, )~] ,  

S(@) = min [S(w), 3.0S(0b) (w/wb)"]. ( W  

Here wb = w13 x 2.2 is a conventional boundary of the spectrum tail and n = 4. Owing 
to the quite wide range of spectrum values permitted by (12~2, b), the actual solution 
of (7) is not damaged and the accuracy of solution is good enough. 

To illustrate the results obtained, four of the calculation runs were chosen, having 
parameters presented in table 1. S(o), G(w) and D(w) are given in SI units. The real 
magnitudes of the frequency and spectra S(w, 0) are defined by presetting the frequency 
scale. In our case, this scale is given in units of radian per second (rad s-'). 

The values of G(o) and D(w) are related to each other in that they produce the same 
flux 4:  

4 = JoQ G(w) dw = 1 D(w) dw. (13) 



292 V. G. Polnikov 

Initial spectrum 
Run S(w, 0) (m' s-l) Location and value of G Location and value of D 

1 45/08 
2 75/06 
3 3/w4 
4 3/w4 

0.1 at 2.7 c w c 3.1 
0.8 at 2.7 c w c 3.1 
0.4 at 0.5 c w c 0.7 
3.2 at 0.5 c w c 0.7 

-0.4 at 0.5 c o c 0.7 
-3.2 at 0.5 c o c 0.7 
-0.1 at 2.7 c w c 3.1 
-0.8 at 2.7 c w c 3.1 

TABLE 1. Run parameters in the solution of equation (7). The upper end of the frequency band 
was 3.84. 

The choice of values of G and D and their location are the theoretical idealization 
needed for a comparison of theory ZF and our calculations. Run 2 differs from run 1 
in that G and D values are increased by a factor of 8. The difference between runs 3 
and 4 is analogous. Such a choice is made in order to find the dependence of a flux 
spectrum level on the values of fluxes F, and 4. 

The results obtained demonstrate the existence of stationary solutions of (7), their 
dependence on the values of G and D (or, more exactly, on values of fluxes F, and 4) 
and their independence of the initial spectral form. 

3. Results and analysis 
One unexpected result of the preliminary calculations is the strong dependence of the 

integral estimation features for the spectrum of the form S(w, 0) - w-l1Ia on the choice 
of frequency integration limits. It means that for such a slowly falling spectrum, the 
value of the integral I is ill-defined. There was a danger of inconsistency between 
spectra of the forms S(o) - w-11/3 and S(w) - w-4 to be used for the numerical 
investigation at a finite frequency range. This circumstance has determined the core of 
the problem under consideration - to clarify the possibility of the existence of flux 
spectra at a finite frequency interval through a numerical solution of equation (7). This 
problem has not yet been considered in the scientific literature. 

The results of calculations for the first run are shown in figure 1. From figure 1 one 
can see the process of stationary spectrum formation. With the aim of a convenient 
estimation of the law of spectrum dependence on frequency, in figure 1 the calculated 
values log[S(w) w11/3] versus a logarithmic scale of frequency are plotted. 

The estimated time of stabilization is of the order of 7, x 4 x lo3 s-l. In the frequency 
range under analysis, 0.8 < w < 2.7 rad s-l located between the source and the sink, 
the form of the stationary spectrum S(w) is described by the relationship 

S(w) = 8 2 0 ~ - ~ . *  m2 s-l. (14) 

The parameters in (14) were obtained by the root-mean-square method with statistical 
errors of the order of 5 %. With this accuracy, the current spectrum shape S(w, t) is 
close to the representation (14). 

It can be seen that the result obtained accords well with the ZF theory and the 
spectrum (14) may be a flux spectrum with a constant value of wave-action flux to low 
frequencies. The discrepancy between (14) and ( 6 4  results from the technical 
limitations of the numerical calculations described above (sparse grid, single At for all 
frequencies, small frequency interval). 

Let us estimate some other parameters of the spectrum (14). The constant flux of 
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FIGURE 1. Results of the numerical solution of equation (7) for run 1 (flux down) at times: 

0,  1, = 0; +, t,  = 1000; 0, t, = 2000; A, t ,  = 4000; x,  t, = 6000 (in s). 

0.56 0,;s 1.11 1.55 2.18 3.07 

wave action F,, provided by the source G, taking into account the relation between n(o)  
and S(w), is defined by 

F, = 27? Iow rv do d0 fi: 25 m3 s-’. 

A comparison of (14), (15) and (5a)  gives the estimate c1 fi: 30. 
The time of stabilization can be estimated from 

This estimate of 7, is in a good agreement with that obtained from numerical 
calculations. Consequently, the parameters of the stationary solution of (7) are self- 
consistent. 

The calculation results for run 2 are presented in figure 2. For this case, the 
magnitude of flux F, is increased by a factor 8 with the aim of determining the law of 
the dependence of a stationary value of S(w) on the value of F,. As seen from figure 
2, the calculated spectral form is close to the theoretical one ( 6 4  and is independent 
of the initial spectral form. With the above accuracy the stationary spectrum is 
described by the relationship 

S(w) = 1.65 x lo3 w-3.76 m2 s-’. (17) 

Here the coefficient c, is unchanged because the magnitude of the spectral level is 
increased in accordance with the increase in the values of F:I3, i.e. by a factor of two. 

Thus, we can state that in the course of the numerical solution of (7), the relationship 
S(w) - is actually realized and the spectrum, formed under the condition that the 
location of the source G is higher than the sink D on the frequency axis, is really a 
fluxable one of the ‘flux-down’ kind. 

Consider now the ‘flux-up’ case (runs 3 and 4) .  The relevant results are shown in 
figures 3 and 4, where the vertical axis is given in units of log[S(o)w4]. 
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FIGURE 2. Results of the numerical solution of equation (7) for run 2 (flux down) at times: 

0, t, = 0; +, t, = 500; 0, 1, = 1500; A, 1, = 2500. 
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FIGURE 3. Results of the numerical solution of equation (7) for run 3 (flux-up) at times: 

0, t1 = 0; +, t ,  = 2000; 0, I, = 4000; A, t., = 6000 (in s). 

The process of energy transfer to high frequencies is characterized by smooth current 
spectra at every moment of time. This is due to the strong dependence of the relaxation 
time T,  on the frequency. For this reason, the discrete portions of energy transferred 
from the source to the sink by nonlinear interactions are rapidly smoothed. 

For run 3, the calculated form of the stationary spectrum for the frequency band 
0.8 < w -= 2.4 rad s-' is described by the relationship 

S(w) = 36 x w-4.1 m2 s-l, (18) 

with an accuracy of the order of 7 %. Equation (18) is very close to the theoretical one 
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FIGURE 4. Results of the numerical solution of equation (7) for run 4 (flux-up) at times: 

0, t ,  = 0; +, t ,  = 800; 0, ts = 1200; A, tr = 1600; V, t ,  = 2000. 

Estimating the energy flux F, by using a formula similar to (15), we obtain 

F, = IOm [ G(w, 0) do  d0 x 0.2 m2 s-l. (19) 

From (18), (19) and (6b) comparison of the spectra (18) and (6b) gives a value cz x 3. 
The stabilization time 7g, defined by 

is in a good agreement with the calculated one 7; z 4 x lo3 s-’. Some discrepancy 
between .“, and 7: may be due to the fact that only a part of the total flux F,, determined 
by (19), is directed to high frequencies, with the other part of F, going low frequencies. 

With the aim of finding the law of the dependence of S(o) on F, for the case 
considered in run 4, the values of F, was increased by a factor of 8. The results for run 
4, shown in the figure 4, are in a good agreement with the theory. In fact, the height 
of the stationary spectrum has increased twofold, but the stabilization time was 
decreased by a factor of 4. Thus we can state that when the source is located lower than 
the sink, the ‘flux-up’ spectra are actually realized. 

4. Conclusions 
For the case of angular isotropic spectra the results presented here are in a good 

agreement with the known theoretical derivations by Zakharov & Filonenko (1966) 
and Zakharov & Zaslavskii (1982). For the fist time we have numerically established 
that the flux spectra over a finite frequency interval are realized in the course of the 
solution of kinetic equation (7) as a result of time averaging of current spectra. 

The necessity of averaging arises because the spectra (6) do not make integral I 
identically zero. For this reason the process of the formation of flux spectra occurs by 
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transferring a discrete amount of energy (or action) from the source to the sink. After 
completion of the transfer of energy, the form of the spectrum is close to the theoretical 
one. The error in the calculations arises from the discrepancy between the current and 
averaged spectra. In our calculations it is of the order of 5 7 % .  

The direct verification of the invariability of the flux values is difficult because of the 
need to integrate the nonlinear transfer at every step of the calculation and then to 
average it. There is a simpler way to check whether constant flux exists which will be 
mentioned below. Here we should pay attention to whether a stationary spectrum 
exists over a finite frequency interval. The stabilizing effect is possibly due to deviations 
of the real shapes of spectra from ideal theoretical ones. 

Regarding flux evaluation the results of the recent paper by Resio & Perrie (1991) 
are rather interesting. Using the example of direct calculations of energy fluxes F, they 
have shown that nonlinear interactions between waves lead to both ‘up’ F,‘ and 
‘down’ fluxes simultaneously. (It is obvious here that the fluxes correspond to the 
particular wave-action fluxes and c.) The total fluxes determined by (5 )  represent 
the sum of both kinds of fluxes. 

On the other hand, it is not difficult to show that for any spectral shape both positive 
and negative values of the total flux exist (i.e. the latter are not constant). For this 
reason, it is very important to define what kinds of fluxes are conserved in the cases 
considered by means of direct calculations. In Resio & Perrie (1991), some points of 
the problem were clarified. A comprehensive investigation is needed, however, and we 
will present one in a forthcoming paper. 

I acknowledge the decisive role of Professor V. Zakharov in the problem under 
study. I am grateful to 0. Lavrova for her vital assistance in the calculations and to V. 
Efimov, V. Krasitskii and M. Zaslavskii for their interest to the work and fruitful 
discussions. 
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